MENENTUKAN VEKTOR RESULTAN DENGAN METODE GRAFIS ?? ..
Dengan  menggunakan metode segitiga dan poligon, kita dapat melukis vektor  resultan dari dua buah vektor atau lebih. Dari gambar vektor resultan  tersebut, kita dapat menentukan besar dan arah vektor resultan dengan  melakukan pengukuran (bukan menghitung). Cara menentukan vektor resultan seperti ini disebut metode grafis. Sekarang, bagaimana menentukan vektor resultan dengan metode grafis ? di baca terus ya, hehe….
Langkah-langkah menentukan besar dan arah vektor resultan dengan metode grafis, adalah sebagai berikut :
- tetapkan sumbu X positif sebagai acuan menentukan arah. Ingat, sudut positif diukur dengan arah berlawanan arah jarum jam, sedangkan sudut negatif diukur dengan arah searah jarum jam.
- gambar setiap vektor yang akan      dijumlahkan (lihat kembali menggambar penjumlahan vektor menggunakan      jajaran genjang)- Arah vektor digambar terhadap sumbu x positif dengan menggunakan busur derajat
 
- gambar vektor Resultan dengan metode segitiga (untuk 2 vektor) dan metode poligon (lebih dari 2 vektor)
- ukur panjang vektor Resultan dengan mistar, sedangkan arah vektor Resultan diukur terhadap sumbu x positif dengan busur derajat
- tentukan besar dan arah vektor      Resultan :- Besar vektor Resultan sama dengan hasil kali panjang vektor resultan (langkah 4) dengan skala panjang (langkah 2b)
- Arah vektor resultan sama dengan sudut yang dibentuk oleh vektor resultan terhadap sumbu x positif yang telah diukur dengan busur derajat
 
Contoh soal :
Tentukan besar dan arah vektor resultan dari vektor perpindahan A sepanjang 20 m dengan arah -30o terhadap sumbu x positif (arah mendatar ke kanan) dan vektor perpindahan B sepanjang 30 m dengan arah +45o terhadap sumbu x positif.
Petunjuk :
Kita  harus menetapkan skala panjang terlebih dahulu. Setelah itu, gambar  vektor A dan B secara terpisah. Terakhir, gambar vektor resultan R=A+B  dengan metode segitiga atau poligon, lalu kita menentukan besar dan  arahnya
Panduan solusi :
Langkah 1, misalnya kita menetapkan skala panjang vektor perpindahan 5 m = 1 cm (catatan : anda dapat menetapkan skala sesuai dengan kemauan anda, penetapan skala di atas hanya sebagai contoh). Dengan demikian, besar perpindahan 20 m digambar dengan panjang vektor 4 cm (ingat, 20 : 5 = 4), dengan arah -30o terhadap sumbu x positif (gambar a).
Langkah 2, gambar vektor perpindahan B (besarnya 30 m) dengan panjang tanda panahnya 6 cm (ingat, skala yang kita tetapkan 5 m = 1 cm, jadi 30 m = 6 cm) dan arahnya sebesar 45o terhadap sumbu x positif. (gambar b). Lihat gambar di bawah.

Langkah 3, gambar vektor resultan R = A + B (gambar c)

Langkah 4, ukur  panjang vektor R dengan mistar dan arah vektor R  dengan bujur sangkar.  Besar vektor R diperoleh dengan mengalikan panjang vektor R dengan  skala panjang vektor
(Catatan  : menentukan besar dan arah vektor Resultan dengan metode grafis  merupakan salah satu pendekatan. Ketelitian hasil yang diperoleh juga  sangat bergantung pada skala gambar, ketelitian mistar, busur derajat  serta ketepatan anda dalam menggambar dan membaca skala. Jika anda ingin  menentukan besar dan arah vektor Resultan secara lebih tepat, dapat  digunakan perhitungan matematis (bukan dengan pengukuran), yakni  menggunakan metode analitis)
MENENTUKAN VEKTOR RESULTAN DENGAN METODE ANALITIS
Dalam menentukan besar dan arah vektor Resultan dengan metode analitis, kita dapat menggunakan 2 cara yaitu menggunakan Rumus Cosinus dan menggunakan Vektor Komponen. 
Menentukan Vektor Resultan segaris kerja (ingat kembali pelajaran SMP)
Di  SMP kita telah belajar tentang vektor resultan untuk dua vektor gaya  yang segaris kerja (searah atau berlawanan arah). Kali ini kita ulangi  kembali, sebagai dasar sebelum menghitung vektor resultan dengan rumus  Cosinus.
Kita meninjau vektor  perpindahan yang segaris kerja. Misalnya kamu berpindah sejauh 200 m ke  arah timur (vektor A), lalu berjalan kembali arah barat sejauh 300 m  (vektor B).berapakah perpindahan total yang kamu lakukan dihitung dari  kedudukan awalmu ?
Panduan Jawaban :
Untuk  vektor2 yang segaris kerja, arahnya dapat dibedakan dengan memberi  tanda + dan -. Jika kita tetapkan arah timur bertanda +, maka arah barat  bertanda -. Berdasarkan ketetapan kita tadi, maka besar vektor A = +200  m dan besar vektor B = -300 m. dengan demikian besar vektor Resultannya  adalah :           R  =  A + B = (+200 m) + (-300 m) = 200 m – 300 m =  -100 m (tanda – hanya menunjukan bahwa arah vektor Resultan ke barat atau sesuai dengan arah vektor B)
(pada gambar ditetapkan skala 50 m = 1 cm)

Melalui  contoh di atas, diketahui bahwa operasi penjumlahan dalam berhitung  berlaku untuk resultan dari dua vektor yang berlawanan arah. Demikian  juga dua vektor yang searah.
Menentukan vektor Resultan Pada Segitiga Siku-siku
Apakah  hitungan vektor tetap memenuhi hukum berhitung jika perpindahan berlaku  untuk dua dimensi ? untuk menjawabnya, perhatikan contoh berikut ini.
Dari  kedudukan awalmu, kamu berjalan ke timur sejauh 300 m (vektor A), lalu  berbelok ke selatan sejauh 400 meter (vektor B). Apakah perpindahan  totalmu 700 m ? atau 100 m ?
Panduan jawaban :
Terlebih  dahulu kita tetapkan skala perpindahan, misalnya 100 m = 1 cm. dengan  demikian, perpindahan ke timur sejauh 300 m digambar dengan panjang  vektor 3 cm, sedangkan perpindahan ke selatan sejauh 400 m digambar 4  cm. lihat gambar di bawah

Untuk  menentukan vektor resultan di atas, kita tidak bisa menggunakan hukum  berhitung seperti pada dua atau lebih vektor yang segaris, karena dua  vektor tersebut tidak segaris kerja. Vektor resultan dapat kita tentukan  besarnya menggunakan rumus Pythagoras dalam segitiga siku-siku.

Jadi, besar vektor Resultan = 500 m
Menentukan arah vektor Resultan 
Kita  sudah mengetahui besar vektor Resultan. Bagaimana dengan arah vektor  Resultan tersebut ? untuk menentukan arah vektor Resultan terhadap salah  satu vektor komponennya, kita menggunakan rumus Sinus, Cosinus dan  Tangen pada segitiga. Perhatikan gambar di bawah ini.

Karena  diketahui besar vektor komponen A (300 m) dan besar vektor komponen B  (400 m), maka dalam menentukan arah vektor Resultan, kita menggunakan  Rumus Tangen.

Menentukan Vektor Resultan dengan Rumus Cosinus
Kita  telah menghitung vektor resultan dari dua vektor yang segaris kerja dan  dua vektor yang saling tegak lurus.  Bagaimana-kah menghitung vektor  resultan untuk dua vektor yang tidak segaris kerja dan tidak saling  tegak lurus ? wah, mumet ah…. 

Kita  bisa menghitung vektor resultan dari dua vektor yang berarah sembarang  dengan menggunakan rumus cosinus, bukan rumus mas cosa 

Rumus Cosinus yang digunakan untuk menghitung resultan besar dua vektor yang arahnya sembarang adalah :

Dari mana asal rumus ini ? tiba-tiba nongol di sini ? silahkan bertanya kepada guru matematika anda. Yang pasti cara penurunan rumus ini dijelaskan pada pelajaran matematika SMA (kelas X deh kayanya) mengenai cosinus dan rumus sinus dalam suatu segitiga sembarang.
Agar penasaran atau kebingunganmu berkurang, mari kita pelajari hal ini tapi hanya secara umum.
Misalnya terdapat dua vektor, F1 dan F2 sebagaimana tampak pada gambar di bawah.



Jika besar vektor resultan dihitung dengan rumus cosinus, bagaimana dengan arahnya ? dihitung dengan rumus apakah ? rumus lagi… rumus lagi 

Kita menggunakan rumus sinus.
Perhatikan kembali gambar di atas. Arah vektor Resultan dapat dihitung menggunakan sinus pada segitiga OPQ.

Contoh soal :
Dua vektor F1 dan F2 memiliki pangkal berhimpit, di mana besar F1 = 4 N dan besar F2 = 3 N. jika sudut yang dibentuk kedua vektor adalah 60o, berapakah besar dan arah vektor resultan ?

Panduan Jawaban :
Besar vektor resultan kita hitung menggunakan persamaan di atas :

Bagaimana dengan arahnya ?
Arah vektor resultan =

Selesai. Gampang khan ? 

MENENTUKAN VEKTOR RESULTAN DENGAN VEKTOR KOMPONEN
Sekarang kita memasuki peradaban baru  teknik menentukan vektor resultan menggunakan vektor komponen selalu  digunakan dalam pembelajaran fisika selanjutnya. Dalam pembahasan Gerak  Parabola, kita juga akan menggunakan teknik ini. oleh karena itu  GuruMuda mengharapkan agar anda dapat menyedot ilmu vektor komponen ini  sampai puas, sehingga bekal perjalanan anda cukup dan tidak kelaparan  atau pusing2 ketika belajar gerak parabola dan kawan-kawan.
  teknik menentukan vektor resultan menggunakan vektor komponen selalu  digunakan dalam pembelajaran fisika selanjutnya. Dalam pembahasan Gerak  Parabola, kita juga akan menggunakan teknik ini. oleh karena itu  GuruMuda mengharapkan agar anda dapat menyedot ilmu vektor komponen ini  sampai puas, sehingga bekal perjalanan anda cukup dan tidak kelaparan  atau pusing2 ketika belajar gerak parabola dan kawan-kawan.
 teknik menentukan vektor resultan menggunakan vektor komponen selalu  digunakan dalam pembelajaran fisika selanjutnya. Dalam pembahasan Gerak  Parabola, kita juga akan menggunakan teknik ini. oleh karena itu  GuruMuda mengharapkan agar anda dapat menyedot ilmu vektor komponen ini  sampai puas, sehingga bekal perjalanan anda cukup dan tidak kelaparan  atau pusing2 ketika belajar gerak parabola dan kawan-kawan.
  teknik menentukan vektor resultan menggunakan vektor komponen selalu  digunakan dalam pembelajaran fisika selanjutnya. Dalam pembahasan Gerak  Parabola, kita juga akan menggunakan teknik ini. oleh karena itu  GuruMuda mengharapkan agar anda dapat menyedot ilmu vektor komponen ini  sampai puas, sehingga bekal perjalanan anda cukup dan tidak kelaparan  atau pusing2 ketika belajar gerak parabola dan kawan-kawan.Sekarang rileks dulu….. silahkan ngemil atau ngelamun atau apa aja-lah,,, terserah kamu.
Metode vektor komponen sangat gampang. Serius…. Oke, mulai ya…..
Oya,  sebelumnya ijinkanlah gurumuda memperkenalkan kepada anda, apa itu  vektor komponen. Tahukah dirimu apa itu vektor komponen ? jika tidak,  mari belajar bersama GM (GuruMuda).
Dalam  menggambarkan sesuatu, kita selalu menggunakan koordinat x dan y (untuk  dua dimensi) atau koordinat xyz (untuk tiga dimensi). Nah, apabila  sebuah vektor membentuk sudut terhadap sumbu x positif, pada bidang  koordinat xy, maka kita bisa menguraikan vektor tersebut ke dalam  komponen sumbu x atau komponen sumbu y. kedua vektor komponen tersebut  biasanya saling tegak lurus. Untuk memudahkan pemahaman anda, kita  gambarkan sebuah vektor pada bidang koordinat xy, sebagaimana tampak  pada gambar di bawah.

Vektor F yang membentuk sudut teta terhadap sumbu x positif, diuraikan menjadi komponen sumbu x, yaitu Fx dan dan komponen pada sumbu y, yakni Fy. Ini merupakan contoh vektor komponen.
Jika vektor F mempunyai nilai/besar, bagaimanakah dengan vektor komponennya, yakni Fx dan Fy ? bagaimana menghitung besar Fx dan Fy ?
Masih ingat-kah rumus cosinus dkk ? lupa…. 

Pahami terlebih dahulu rumus sinus, cosinus dan tangen di bawah ini… dipelototin aja kalo mau (pisss…..)



Bagaimana  dengan arah F ? untuk menentukan arah vektor resultan, kita menggunakan  rumus tangen. Kita menggunakan rumus tangen karena komponen Fx dan Fy diketahui.

Contoh soal  1 :
Tentukanlah komponen-komponen vektor gaya (F) yang besarnya 40 N dan membentuk sudut 60o terhadap sumbu x positif (lihat gambar)

Panduan jawaban :
Yang ditanyakan pada soal di atas adalah komponen vektor F pada sumbu x dan y (Fx dan Fy).

Contoh soal  2 :
Tentukan besar dan arah vektor perpindahan (L), di mana komponen sumbu x-nya = 40 m dan komponen sumbu y-nya = 30 m.
Panduan jawaban :
Sebelum menjawab pertanyaan di atas, terlebih dahulu digambarkan vektor L dan vektor komponennya pada sumbu x dan sumbu y.

Lx = 40 m
Ly = 30 m
Besar vektor perpindahan (L) adalah :


Vektor perpindahan L membentuk sudut 53o terhadap sumbu x positif (berada di kuadran I)
NB : Kalo dirimu ingin dapat pembahasan soal vektor lengkap, Silahkan daftar jadi anggota newletter. Link download langsung dikirim ke emailmu, saat ini juga

Materi Vektor dan skalar :
- Besaran vektor dan skalar
- Penjumlahan vektor
- Menentukan vektor resultan
- Perkalian titik dan perkalian silang
- Perkalian vektor dan skalar menggunakan komponen vektor satuan





0 komentar: